Determination of elevated temperature material properties by ANN-based FE model

Author:

Upasiri IrinduORCID,Konthesingha Chaminda,Nanayakkara Anura,Poologanathan Keerthan

Abstract

PurposeElevated temperature material properties are essential in predicting structural member's behavior in high-temperature exposures such as fire. Even though experimental methodologies are available to determine these properties, advanced equipment with high costs is required to perform those tests. Therefore, performing those experiments frequently is not feasible, and the development of numerical techniques is beneficial. A numerical technique is proposed in this study to determine the temperature-dependent thermal properties of the material using the fire test results based on the Artificial Neural Network (ANN)-based Finite Element (FE) model.Design/methodology/approachAn ANN-based FE model was developed in the Matlab program to determine the elevated temperature thermal diffusivity, thermal conductivity and the product of specific heat and density of a material. The temperature distribution obtained from fire tests is fed to the ANN-based FE model and material properties are predicted to match the temperature distribution.FindingsElevated temperature thermal properties of normal-weight concrete (NWC), gypsum plasterboard and lightweight concrete were predicted using the developed model, and good agreement was observed with the actual material properties measured experimentally. The developed method could be utilized to determine any materials' elevated temperature material properties numerically with the adequate temperature distribution data obtained during a fire or heat transfer test.Originality/valueTemperature-dependent material properties are important in predicting the behavior of structural elements exposed to fire. This research study developed a numerical technique utilizing ANN theories to determine elevated temperature thermal diffusivity, thermal conductivity and product of specific heat and density. Experimental methods are available to evaluate the material properties at high temperatures. However, these testing equipment are expensive and sophisticated; therefore, these equipment are not popular in laboratories causing a lack of high-temperature material properties for novel materials. However conducting a fire test to evaluate fire performance of any novel material is the common practice in the industry. ANN-based FE model developed in this study could utilize those fire testing results of the structural member (temperature distribution of the member throughout the fire tests) to predict the material's thermal properties.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference59 articles.

1. A backpropagation neural network model for semi-rigid steel connections;Computer-Aided Civil and Infrastructure Engineering,1995

2. State-of-the-art in artificial neural network applications: a survey;Heliyon,2018

3. Neural networks in civil engineering: 1989-2000;Computer-Aided Civil and Infrastructure Engineering,2001

4. Artificial neural networks in structural engineering: concept and applications;JKAU: Engineering Sciences,1999

5. The thermal conductivity of concrete;Magazine of Concrete Research,1963

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing Shear Capacity Prediction of Steel Beams with Machine Learning Techniques;Arabian Journal for Science and Engineering;2023-08-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3