Application of Industry 4.0 in LPG condition monitoring and emergency systems using IoT approach

Author:

Hasan Md. Zahid,Ahammed Rubel

Abstract

Purpose The Purpose of this research is to initiate the “Fourth Industrial Revolution” by using the Internet of things (IoT), which can be applied to flammable gas condition monitoring and detection of gas leakage and activate fire extinguisher in case of fire accidents. Liquefied petroleum gas (LPG) leakage and explosions cause many injuries and death each year. By developing an automated and remote LPG ppm condition monitoring and fire extinguisher activation system with the help of a cyber-physical system, the rate of accidents and injuries can be reduced to a significant amount. Design/methodology/approach The IoT enabled the sensors to transmit LPG concentration value reading to a mobile app or cloud server and control actuators by connecting all in the same network. In case of a fire accident, the solenoid valve automatically or can be activated by an android application manually, which will be pre-installed in mobile phones. Another advantage of this system is that the gas cylinder or flammable particle source can be closed by closing the solenoid valves attached to their outlets. The first challenge of Industry 4.0 is to develop a cyber-physical system where all physical entities can be monitored and controlled over the internet or another way remotely or from a single point. Findings This fire extinguisher system can be used everywhere and in all types of firefighting because all types of fire extinguishers are commercially available in cylinders where solenoid valves can be used instead of conventional valves. This system will reduce human effort in the fire safety system and reduce the number of losses owing to fire accidents by taking all actions automatically and from a safe distance. The reliability analysis of this system indicated that the working condition for the best outcome is 20–35°C and the baud rate of the controller should be 11.5 kHz. Originality/value The study of pieces of the literature summarizes that this work is unique in terms of the application of Industry 4.0 in the fire safety system and reliability analysis of this system helped to determine the operating condition for the best performance of this system. Some LPG condition monitoring system was developed using IoT before but had many limitations such as working capability during load shading or emergency cases.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Reference25 articles.

1. Conceptual design of multi-operation outdoor flexural creep test rig using hybrid concurrent engineering approach;Journal of Materials Research and Technology,2020

2. The Internet of Things: a survey;Computer Networks,2010

3. On the methods and theory of reliability;Journal of Nervous and Mental Disease,1976

4. Development on gas leak detection and location system based on wireless sensor networks,2011

5. Wireless sensor network on LPG gas leak detection and automatic gas regulator system using Arduino;IOP Conference Series: Materials Science and Engineering,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3