Predicting student retention in higher education institutions (HEIs)

Author:

Addison LetetiaORCID,Williams Densil

Abstract

PurposeThis paper aims to provide a parsimonious but rigorous model to assist decision-makers to determine critical factors which can lead to higher graduation rates amongst higher education institution (HEI) participants. It predicts the odds of dropout amongst university students, using HEI data from a developing country. This is used as a basis for a Student Retention Predictive (SRP) Model to inform HEI administrators about predicted risks of attrition amongst cohorts.Design/methodology/approachA classification tool, the Logistic Regression Model, is fitted to the data set for a particular HEI in a developing country. The model is used to predict significant factors for student dropout and to create a base model for predicted risks by various student demographic variables.FindingsTo reduce dropout and to ensure higher graduation rates, the model suggests that variables such as age group, faculty, academic standing and cumulative GPA are significant. These indicative results can drive intervention strategies to improve student retention in HEIs and lessen the gap between graduates and non-graduates, with the goal of reducing socio-economic inequalities in society.Originality/valueThis research employs risk bands (low, medium and high) to classify students at risk of attrition or drop out. This provides invaluable insights to HEI administrators in the development of intervention strategies to reduce dropout and increase graduation rates to impact the wider public policy issue of socio-economic inequities.

Publisher

Emerald

Subject

Education,Life-span and Life-course Studies

Reference69 articles.

1. Sovereign wealth funds and economic growth;Journal of Asset Management,2022

2. Modeling of student academic achievement in engineering education using cognitive and non-cognitive factors;Journal of Applied Research in Higher Education,2019

3. Can big data analytics help bridge the economic inequality in India?;Analytics India Magazine;Analytics India Magazine,2018

4. The drivers of student enrolment and retention: a stakeholder perception analysis in higher education;Perspectives in Education,2013

5. Arifi, S., Kryeziu, V. and Nelson, K. (2013), “Student dropout prevention and response from Kosovo”, available at: https://www.crs.org/sites/default/files/tools-research/how-to-guide student-dropout-prevention-response.pdf

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3