Abstract
PurposeThis study aims to provide insight into the operational factors of big data. The operational indicators/factors are categorized into three functional parts, namely synthesis, speed and significance. Based on these factors, the organization enhances its big data analytics (BDA) performance followed by the selection of data quality dimensions to any organization's success.Design/methodology/approachA fuzzy analytic hierarchy process (AHP) based research methodology has been proposed and utilized to assign the criterion weights and to prioritize the identified speed, synthesis and significance (3S) indicators. Further, the PROMETHEE (Preference Ranking Organization METHod for Enrichment of Evaluations) technique has been used to measure the data quality dimensions considering 3S as criteria.FindingsThe effective indicators are identified from the past literature and the model confirmed with industry experts to measure these indicators. The results of this fuzzy AHP model show that the synthesis is recognized as the top positioned and most significant indicator followed by speed and significance are developed as the next level. These operational indicators contribute toward BDA and explore with their sub-categories' priority.Research limitations/implicationsThe outcomes of this study will facilitate the businesses that are contemplating this technology as a breakthrough, but it is both a challenge and opportunity for developers and experts. Big data has many risks and challenges related to economic, social, operational and political performance. The understanding of data quality dimensions provides insightful guidance to forecast accurate demand, solve a complex problem and make collaboration in supply chain management performance.Originality/valueBig data is one of the most popular technology concepts in the market today. People live in a world where every facet of life increasingly depends on big data and data science. This study creates awareness about the role of 3S encountered during big data quality by prioritizing using fuzzy AHP and PROMETHEE.
Subject
Strategy and Management,General Business, Management and Accounting,Business and International Management,General Decision Sciences
Reference107 articles.
1. Mining and prioritization of association rules for big data: multi-criteria decision analysis approach;Journal of Big Data,2017
2. How to improve firm performance using big data analytics capability and business strategy alignment?;International Journal of Production Economics,2016
3. Understanding big data analytics capabilities in supply chain management: unravelling the issues, challenges and implications for practice;Transportation Research Part E: Logistics and Transportation Review,2018
4. Identifying buzz in social media: a hybrid approach using artificial bee colony and k-nearest neighbors for outlier detection;Social Network Analysis and Mining,2017
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献