Some results on the total zero-divisor graph of a commutative ring

Author:

Visweswaran Subramanian

Abstract

PurposeThe purpose of this paper is to characterize a commutative ring R with identity which is not an integral domain such that ZT(R), the total zero-divisor graph of R is connected and to determine the diameter and radius of ZT(R) whenever ZT(R) is connected. Also, the purpose is to generalize some of the known results proved by Duric et al. on the total zero-divisor graph of R.Design/methodology/approachWe use the methods from commutative ring theory on primary decomposition and strong primary decomposition of ideals in commutative rings. The structure of ideals, the primary ideals, the prime ideals, the set of zero-divisors of the finite direct product of commutative rings is used in this paper. The notion of maximal Nagata prime of the zero-ideal of a commutative ring is also used in our discussion.FindingsFor a commutative ring R with identity, ZT(R) is the intersection of the zero-divisor graph of R and the total graph of R induced by the set of all non-zero zero-divisors of R. The zero-divisor graph of R and the total graph of R induced by the set of all non-zero zero-divisors of R are well studied. Hence, we determine necessary and sufficient condition so that ZT(R) agrees with the zero-divisor graph of R (respectively, agrees with the total graph induced by the set of non-zero zero-divisors of R). If Z(R) is an ideal of R, then it is noted that ZT(R) agrees with the zero-divisor graph of R. Hence, we focus on rings R such that Z(R) is not an ideal of R. We are able to characterize R such that ZT(R) is connected under the assumptions that the zero ideal of R admits a strong primary decomposition and Z(R) is not an ideal of R. With the above assumptions, we are able to determine the domination number of ZT(R).Research limitations/implicationsDuric et al. characterized Artinian rings R such that ZT(R) is connected. In this paper, we extend their result to rings R such that the zero ideal of R admits a strong primary decomposition and Z(R) is not an ideal of R. As an Artinian ring is isomorphic to the direct product of a finite number of Artinian local rings, we try to characterize R such that ZT(R) is connected under the assumption that R is ta finite direct product of rings R1, R2, … Rn with Z(Ri) is an ideal of Ri for each i between 1 to n. Their result on domination number of ZT(R) is also generalized in this paper. We provide several examples to illustrate our results proved.Practical implicationsThe implication of this paper is that the existing result of Duric et al. is applicable to large class of commutative rings thereby yielding more examples. Moreover, the results proved in this paper make us to understand the structure of commutative rings better. It also helps us to learn the interplay between the ring-theoretic properties and the graph-theoretic properties of the graph associated with it.Originality/valueThe results proved in this paper are original and they provide more insight into the structure of total zero-divisor graph of a commutative ring. This paper provides several examples. Not much work done in the area of total zero-divisor graph of a commutative ring. This paper is a contribution to the area of graphs and rings and may inspire other researchers to study the total zero-divisor graph in further detail.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3