‘Big data’ patentometrics for R&D decision-making

Author:

Verma Charu,Suri Pradeep Kumar

Abstract

Purpose The purpose of this paper is to highlight the use of big data through patentometric insights for R&D decision-making. Design/methodology/approach This study assesses the inventive activity through ‘big data’ patents, registered by inventors worldwide, using WIPO Patentscope database. The objective is to use the insights from patentometrics for R&D decision-making. The data from WIPO PatentScope (https://patentscope.wipo.int/search/en/search.jsf) was searched for current patent scenario in area of ‘big data’. The data was further organized and cleaned using the Google ‘OpenRefine’. Data was pre-processed to remove all null values. Cleaned data was analyzed using programming language ‘R’, MS Excel (charts and Pivot tables) and free data visualization tool called ‘Tableau Public’, to get insights for R&D decision-making. Findings The key insights included trends (patents with years of publication), top technologies trending the current space, top organizations leading in these technologies and the top inventors who are publishing patents in these technologies through leading organizations were drawn. Details in Section 5 in the paper. Research limitations/implications Global patent data is multi-lingual and spreads across a set of multiple databases. Domain experts may be required to assess, identify and extract the relevant information for analysis and visualization of multi-lingual distributed data sets. Government organizations generally have multi-dimensional goals that may be more toward societal benefits. On the other hand, the commercial companies are more focused on profit. Therefore, the performance management process has to be really effective because it is critical for getting value in the government sector. Practical implications Insights from patent analytics serve as the important input to R&D managers as well as policymakers to assess the global needs to plan the national orientation according to the global market. This will help further for R&D projects prioritization, planning, budget allocations, human capital planning and other gamut of R&D management and decision-making. Social implications Facilitation for R&D institutions (government as well as private) to formulate the research strategy for the domains or research areas to delve into. R&D decisions will be completely data-driven making them more accurate, reliable, valid and informed. These insights are very relevant for policymakers as well to facilitate the need assessment to determine the National priorities, make improvements in meeting societal country-level challenges during the resource allocation at top and subsequently at all other levels. Originality/value Data analytics of global patents in “big data” till 2019 to get insights to facilitate R&D decision-making.

Publisher

Emerald

Subject

Management of Technology and Innovation,Information Systems and Management,Computer Networks and Communications,Information Systems,Management Information Systems

Reference32 articles.

1. Big data and the future of R&D management deliverable 1: a primer on big data for innovation,2017

2. Balanced scorecard for performance evaluation of R&D organization: a conceptual model,2006

3. Linking leadership behaviors and information exchange to improve supply chain performance: a conceptual model;Global Journal of Flexible Systems Management,2015

4. Utilizing the balanced scorecard for R&D performance measurement;R&D Management,2004

5. China RFID patent analysis,2009

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3