A new seasonal cycle GM (1,1) model and its application in railway passenger volume forecasting

Author:

Wang HuanORCID,Wang YuhongORCID,Wu DongdongORCID

Abstract

PurposeTo predict the passenger volume reasonably and accurately, this paper fills the gap in the research of quarterly data forecast of railway passenger volume. The research results can also provide references for railway departments to plan railway operation lines reasonably and efficiently.Design/methodology/approachThis paper intends to establish a seasonal cycle first order univariate grey model (GM(1,1) model) combing with a seasonal index. GM (1,1) is termed as the trend equation to fit the railway passenger volume in China from 2014 to 2018. The railway passenger volume in 2019 is used as the experimental data to verify the forecasting effect of the proposed model. The forecasting results of the seasonal cycle GM (1,1) model are compared with the traditional GM (1,1) model, seasonal grey model (SGM(1,1)), Seasonal Autoregressive Integrated Moving Average (SARIMA) model, moving average method and exponential smoothing method. Finally, the authors forecast the railway passenger volume from 2020 to 2022.FindingsThe quarterly data of national railway passenger volume have a clear tendency of cyclical fluctuations and show an annual growth trend. According to the comparison of the modeling results, the authors know that the seasonal cycle GM (1,1) model has the best prediction effect with the mean absolute percentage error of 1.32%. It is much better than the other models, reflecting the feasibility of the proposed model.Originality/valueAs the previous grey prediction model could not solve the series prediction problem with seasonal fluctuation, and there are few research studies on quarterly railway passenger volume forecasting, GM (1,1) model is taken as the trend equation and combined with the seasonal index to construct a combination forecasting model for accurate forecasting results in this study. Besides, considering the impact of the epidemic on passenger volume, the authors introduce a disturbance factor to deal with the forecasting results in 2020, making the modeling results more scientific, practical and referential.

Publisher

Emerald

Reference51 articles.

1. Passenger demand forecasting in scheduled transportation;European Journal of Operational Research,2020

2. SARIMA damp trend grey forecasting model for airline industry;Journal of Air Transport Management,2020

3. An extended grey model GM(1, 1, exp(bk)) and its application in Chinese civil air passenger volume prediction;Journal of Systems Science and Information,2019

4. Control problems of grey systems;Systems and Control Letters,1982

5. Introduction to grey system theory;Journal of Grey System,1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3