Time series trending for condition assessment and prognostics

Author:

Mosallam Ahmed,Medjaher Kamal,Zerhouni Noureddine

Abstract

Purpose – The developments of complex systems have increased the demand for condition monitoring techniques so as to maximize operational availability and safety while decreasing the costs. Signal analysis is one of the methods used to develop condition monitoring in order to extract important information contained in the sensory signals, which can be used for health assessment. However, extraction of such information from collected data in a practical working environment is always a great challenge as sensory signals are usually multi-dimensional and obscured by noise. The paper aims to discuss this issue. Design/methodology/approach – This paper presents a method for trends extraction from multi-dimensional sensory data, which are then used for machinery health monitoring and maintenance needs. The proposed method is based on extracting successive features from machinery sensory signals. Then, unsupervised feature selection on the features domain is applied without making any assumptions concerning the source of the signals and the number of the extracted features. Finally, empirical mode decomposition (EMD) algorithm is applied on the projected features with the purpose of following the evolution of data in a compact representation over time. Findings – The method is demonstrated on accelerated degradation data set of bearings acquired from PRONOSTIA experimental platform and a second data set acquired form NASA repository. Originality/value – The method showed that it is able to extract interesting signal trends which can be used for health monitoring and remaining useful life prediction.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Computer Science Applications,Control and Systems Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3