Knowledge recommendation for workplace learning: a system design and evaluation perspective

Author:

Geng ShuangORCID,Tan Lijing,Niu Ben,Feng Yuanyue,Chen Li

Abstract

Purpose Although digitalization in the workplace is burgeoning, tools are needed to facilitate personalized learning in informal learning settings. Existing knowledge recommendation techniques do not account for dynamic and task-oriented user preferences. The purpose of this paper is to propose a new design of a knowledge recommender system (RS) to fill this research gap and provide guidance for practitioners on how to enhance the effectiveness of workplace learning. Design/methodology/approach This study employs the design science research approach. A novel hybrid knowledge recommendation technique is proposed. An experiment was carried out in a case company to demonstrate the effectiveness of the proposed system design. Quantitative data were collected to investigate the influence of personalized knowledge service on users’ learning attitude. Findings The proposed personalized knowledge RS obtained satisfactory user feedback. The results also show that providing personalized knowledge service can positively influence users’ perceived usefulness of learning. Practical implications This research highlights the importance of providing digital support for workplace learners. The proposed new knowledge recommendation technique would be useful for practitioners and developers to harness information technology to facilitate workplace learning and effect organization learning strategies. Originality/value This study expands the scope of research on RS and workplace learning. This research also draws scholarly attention to the effective utilization of digital techniques, such as a RS, to support user decision making in the workplace.

Publisher

Emerald

Subject

Economics and Econometrics,Sociology and Political Science,Communication

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3