Ethical and legal challenges of AI in marketing: an exploration of solutions

Author:

Kumar Dinesh,Suthar Nidhi

Abstract

Purpose Artificial intelligence (AI) has sparked interest in various areas, including marketing. However, this exhilaration is being tempered by growing concerns about the moral and legal implications of using AI in marketing. Although previous research has revealed various ethical and legal issues, such as algorithmic discrimination and data privacy, there are no definitive answers. This paper aims to fill this gap by investigating AI’s ethical and legal concerns in marketing and suggesting feasible solutions. Design/methodology/approach The paper synthesises information from academic articles, industry reports, case studies and legal documents through a thematic literature review. A qualitative analysis approach categorises and interprets ethical and legal challenges and proposes potential solutions. Findings The findings of this paper raise concerns about ethical and legal challenges related to AI in the marketing area. Ethical concerns related to discrimination, bias, manipulation, job displacement, absence of social interaction, cybersecurity, unintended consequences, environmental impact, privacy and legal issues such as consumer security, responsibility, liability, brand protection, competition law, agreements, data protection, consumer protection and intellectual property rights are discussed in the paper, and their potential solutions are discussed. Research limitations/implications Notwithstanding the interesting insights gathered from this investigation of the ethical and legal consequences of AI in marketing, it is important to recognise the limits of this research. Initially, the focus of this study is confined to a review of the most important ethical and legal issues pertaining to AI in marketing. Additional possible repercussions, such as those associated with intellectual property, contracts and licencing, should be investigated more deeply in future studies. Despite the fact that this study gives various answers and best practices for tackling the stated ethical and legal concerns, the viability and efficacy of these solutions may differ depending on the context and industry. Thus, more research and case studies are required to evaluate the applicability and efficacy of these solutions in other circumstances. This research is mostly based on a literature review and may not represent the experiences or opinions of all stakeholders engaged in AI-powered marketing. Further study might involve interviews or surveys with marketing professionals, customers and other key stakeholders to offer a full knowledge of the practical difficulties and solutions. Because of the rapid speed of technical progress, AI’s ethical and regulatory ramifications in marketing are continually increasing. Consequently, this work should be a springboard for more research and continuing conversations on this subject. Practical implications This study’s findings have several practical implications for marketing professionals. Emphasising openness and explainability: Marketing professionals should prioritise transparency in their use of AI, ensuring that customers are fully informed about data collection and utilisation for targeted advertising. By promoting openness and explainability, marketers can foster customer trust and avoid the negative consequences of a lack of transparency. Establishing ethical guidelines: Marketing professionals need to develop ethical rules for the creation and implementation of AI-powered marketing strategies. Adhering to ethical principles ensures compliance with legal norms and aligns with the organisation’s values and ideals. Investing in bias detection tools and privacy-enhancing technology: To mitigate risks associated with AI in marketing, marketers should allocate resources to develop and implement bias detection tools and privacy-enhancing technology. These tools can identify and address biases in AI algorithms, safeguard consumer privacy and extract valuable insights from consumer data. Social implications This study’s social implications emphasise the need for a comprehensive approach to address the ethical and legal challenges of AI in marketing. This includes adopting a responsible innovation framework, promoting ethical leadership, using ethical decision-making frameworks and conducting multidisciplinary research. By incorporating these approaches, marketers can navigate the complexities of AI in marketing responsibly, foster an ethical organisational culture, make informed ethical decisions and develop effective solutions. Such practices promote public trust, ensure equitable distribution of benefits and risk, and mitigate potential negative social consequences associated with AI in marketing. Originality/value To the best of the authors’ knowledge, this paper is among the first to explore potential solutions comprehensively. This paper provides a nuanced understanding of the challenges by using a multidisciplinary framework and synthesising various sources. It contributes valuable insights for academia and industry.

Publisher

Emerald

Reference81 articles.

1. Special issue on cybersecurity management in the era of AI;Journal of Network and Systems Management,2022

2. The evolution of Fintech: a new post-crisis paradigm?;Georgetown Journal of International Law,2016

3. Emerging challenges in AI and the need for AI ethics education;AI and Ethics,2021

4. Ethical leadership: a review and future directions;The Leadership Quarterly,2006

5. What can machine learning do? Workforce implications;Science,2017

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Risk Assessment and Mitigation With Generative AI Models;Advances in Digital Crime, Forensics, and Cyber Terrorism;2024-09-13

2. The role of ESG reporting, artificial intelligence, stakeholders and innovation performance in fostering sustainability culture and climate resilience;Journal of Financial Reporting and Accounting;2024-09-11

3. The Future of Ethical AI in Large Language Models;Advances in Computational Intelligence and Robotics;2024-08-30

4. AI-Driven Service Marketing;Advances in Hospitality, Tourism, and the Services Industry;2024-07-26

5. AI-Enabled Segmentation Targeting and Positioning (STP) in the Service Industry;Advances in Marketing, Customer Relationship Management, and E-Services;2024-07-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3