Cavitation characteristics and energy loss in high-pressure differential control valve

Author:

Jin Haozhe,Wen Ruoshuang,Wang Chao,Liu Xiaofei

Abstract

Purpose The purpose of this study is to determine the cavitation flow characteristics of the high-pressure differential control valve. The relationship between cavitation, flow coefficient and spool angle is obtained. By analyzing the relationship between different spool angles and energy loss, the energy loss at different spool angles is predicted. Design/methodology/approach A series of numerical simulations were performed to study the cavitation problem of a high-pressure differential control valve using the RNG k–e turbulence model and the Zwart cavitation model. The flow states and energy distribution at different spool angles were analyzed under specific working conditions. Findings The cavitation was the weakest when the spool angle was 120° or the outlet pressure was 8 MPa. The pressure and speed fluctuations of the valve in the throttle section were greater than those at other locations. By calculating the entropy production rate, the reason and location of valve energy loss are analyzed. The energy loss near the throttling section accounts for about 92.7% of the total energy loss. According to the calculated energy loss relationship between different regions of the spool angle, the relationship between any spool angle and energy loss in the [80,120] interval is proposed. Originality/value This study analyzes the cavitation flow characteristics of the high-pressure differential control valve and provides the law of energy loss in the valve through the analysis method of entropy. The relationship between spool angle and energy loss under cavitation is finally proposed. The research results are expected to provide a theoretical basis for the optimal design of valves.

Publisher

Emerald

Subject

Mechanical Engineering,Aerospace Engineering,Computational Mechanics,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3