Inverse problems in identification and modeling of thermal processes: Russian contributions

Author:

Alifanov Oleg M.

Abstract

Purpose The main purpose of this study, reflecting mainly the content of the authors’ plenary lecture, is to make a brief overview of several approaches developed by the author and his colleagues to the solution to ill-posed inverse heat transfer problems (IHTPs) with their possible extension to a wider class of inverse problems of mathematical physics and, most importantly, to show the wide possibilities of this methodology by examples of aerospace applications. In this regard, this study can be seen as a continuation of those applications that were discussed in the lecture. Design/methodology/approach The application of the inverse method was pre-tested with experimental investigations on a special test equipment in laboratory conditions. In these studies, the author used the solution to the nonlinear inverse problem in the conjugate (conductive and convective) statement. The corresponding iterative algorithm has been developed and tested by a numerical and experimental way. Findings It can be stated that the theory and methodology of solving IHTPs combined with experimental simulation of thermal conditions is an effective tool for various fundamental and applied research and development in the field of heat and mass transfer. Originality/value With the help of the developed methods of inverse problems, the investigation was conducted for a porous cooling with a gaseous coolant for heat protection of the re-entry vehicle in the natural environment of hypersonic flight. Moreover, the analysis showed that the inverse methods can make a useful contribution to the study of heat transfer at the surface of a solid body under the influence of the hypersonic heterogeneous (dusty) gas stream and in many other aerospace applications.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference54 articles.

1. Application of the regularization principle to the formulation of approximate solutions of inverse heat-conduction problems;Journal of Engineering Physics,1972

2. Regularization of solutions of inverse problem of heat conduction;Heat Transfer – Soviet Research,1973

3. Inverse problem of heat conduction;Journal of Engineering Physics,1973

4. Solution of an inverse heat-conduction problem by iterative methods;Journal of Engineering Physics,1974

5. Determination of heat loads from a solution of the nonlinear inverse problem;High Temperature,1977

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3