Building a training dataset for classification under a cost limitation

Author:

Chen Yen-Liang,Cheng Li-Chen,Zhang Yi-Jun

Abstract

Purpose A necessary preprocessing of document classification is to label some documents so that a classifier can be built based on which the remaining documents can be classified. Because each document differs in length and complexity, the cost of labeling each document is different. The purpose of this paper is to consider how to select a subset of documents for labeling with a limited budget so that the total cost of the spending does not exceed the budget limit, while at the same time building a classifier with the best classification results. Design/methodology/approach In this paper, a framework is proposed to select the instances for labeling that integrate two clustering algorithms and two centroid selection methods. From the selected and labeled instances, five different classifiers were constructed with good classification accuracy to prove the superiority of the selected instances. Findings Experimental results show that this method can establish a training data set containing the most suitable data under the premise of considering the cost constraints. The data set considers both “data representativeness” and “data selection cost,” so that the training data labeled by experts can effectively establish a classifier with high accuracy. Originality/value No previous research has considered how to establish a training set with a cost limit when each document has a distinct labeling cost. This paper is the first attempt to resolve this issue.

Publisher

Emerald

Subject

Library and Information Sciences,Computer Science Applications

Reference41 articles.

1. A survey of text classification algorithms;Mining Text Data,2012

2. Active learning: a survey,2014

3. A new hybrid semi-supervised algorithm for text classification with class-based semantics;Knowledge-Based Systems,2016

4. Semi-automatic data annotation guided by feature space projection;Pattern Recognition,2021

5. Efficient agglomerative hierarchical clustering;Expert Systems with Applications,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Identification effect of least square fitting method in archives management;Heliyon;2023-09

2. Classifier Construction Under Budget Constraints;Proceedings of the 2022 International Conference on Management of Data;2022-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3