Predicting friction coefficient of textured 45# steel based on machine learning and analytical calculation

Author:

Li Zhenshun,Li Jiaqi,An Ben,Li Rui

Abstract

Purpose This paper aims to find the best method to predict the friction coefficient of textured 45# steel by comparing different machine learning algorithms and analytical calculations. Design/methodology/approach Five machine learning algorithms, including K-nearest neighbor, random forest, support vector machine (SVM), gradient boosting decision tree (GBDT) and artificial neural network (ANN), are applied to predict friction coefficient of textured 45# steel surface under oil lubrication. The superiority of machine learning is verified by comparing it with analytical calculations and experimental results. Findings The results show that machine learning methods can accurately predict friction coefficient between interfaces compared to analytical calculations, in which SVM, GBDT and ANN methods show close prediction performance. When texture and working parameters both change, sliding speed plays the most important role, indicating that working parameters have more significant influence on friction coefficient than texture parameters. Originality/value This study can reduce the experimental cost and time of textured 45# steel, and provide a reference for the widespread application of machine learning in the friction field in the future.

Publisher

Emerald

Reference48 articles.

1. Impact of multi-scaled surface textures on tribological performance of parallel sliding contact under lubricated condition;Tribology International,2023

2. Prediction of nanoscale friction for two-dimensional materials using a machine learning approach;Tribology Letters,2020

3. Grid search in hyperparameter optimization of machine learning models for prediction of HIV/AIDS test results;International Journal of Computers and Applications,2021

4. Using machine learning radial basis function (RBF) method for predicting lubricated friction on textured and porous surfaces;Surface Topography: Metrology and Properties,2020

5. The artificial neural network based prediction of friction properties of Al2O3-TiO2 coatings;Industrial Lubrication and Tribology,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3