Effect of misalignment and rarefaction effect on the comprehensive characteristic of MEMS gas bearing

Author:

Li Liangliang,Xie Yonghui

Abstract

Purpose Owing to the development of the smaller-sized rotational machinery, the demand for the high-speed and low-resistance gas bearing increases rapidly. The research of micro gas bearing in the condition of rarefied gas state is still not satisfied. Therefore, the purpose of this paper is to present a numerical investigation of the effect of misalignment and rarefaction effect on the comprehensive performance of micro-electrical-mechanical system (MEMS) gas bearing. Design/methodology/approach The Fukui and Kaneko model is expanded to 2D solution domain to describe the flow field parameters. The finite element method is used to discretize the equation. Newton–Raphson method is used to solve the nonlinear equations for the static performance of gas bearing, and partial deviation method is adopted for the solution of dynamic equations. Findings The static and dynamic characteristics of MEMS gas bearing are calculated, and the comparison is made to study the influence of rarefaction effect and misalignment. The results show that the rarefaction effect will decrease bearing load capacity compared with traditional solution of Reynolds equation, and the misalignment will reduce the stability of bearing. The influence of misalignment on gas film thickness is also analyzed in this paper. Originality/value The investigation of this paper emerges the change regularity of comprehensive performance of MEMS gas bearing considering rarefaction effect and misalignment, which provides a reference for the actual manufacturing of MEMS gas bearing and for the safety operation of micro dynamic machinery. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2020-0023/

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3