Friction and wear properties of three different steels against paper-based friction material

Author:

Wu Jianpeng,Ma Biao,Li Heyan,Ma Chengnan

Abstract

Purpose The purpose of this paper is to study friction and wear properties of three types of steels against paper-based friction disc, including 65Mn, 20#steel and 30CrAl, so as to obtain the appropriate working conditions for different friction materials in the transmission system. Design/methodology/approach Based on actual working conditions, pin-on-disc tests are conducted on a universal material tester. The two evaluation indexes, including average friction coefficient and variation coefficient, are introduced to analyze the different friction properties among three types of steel. Furthermore, the temperature-dependent wear pattern and wear depth are subsequently studied. Findings The results show that 65Mn is more suitable for working under heavy load and low velocity, but 30CrAl and 20#steel are suitable for working under light load and high velocity. Moreover, wear primarily occurs on paper-based material and peaks at about 325. Practical implications This research of different materials and friction property for friction pairs is helpful to improve the performance and prolong the service life of transmission systems. Originality/value Suitable working conditions of different friction materials are obtained, and the correlation between wear and decomposition in high temperature is verified.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference31 articles.

1. Velocity-strengthening friction significantly affects interfacial dynamics, strength and dissipation;Scientific Reports,2015

2. On the nature of running-in;Tribology International,2005

3. Study on torque characteristics of multi-plate wet clutches during engagement;Journal of Huazhong University of Science and Technology (Natural Science Edition),2014

4. Influence of porosity of paper-based friction materials on compression-resilience and tribology properties;Tribology,2007

5. Effect of graphite content on the friction and wear performance of paper-based friction materials;Tribology,2007

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3