Ultrathin film formation under combined effect of surface roughness and surface force for elastohydrodynamic lubrication of point contact problems

Author:

Abd Alsamieh Mohamed

Abstract

Purpose The purpose of this study is to investigate the combined effect of surface force, solvation and Van der Waals forces and surface topography parameters of amplitude and wavelength on the formation of ultrathin films for elastohydrodynamic lubrication of point contact problems. Design/methodology/approach The Newton–Raphson technique is used to simultaneously solve the Reynolds’ film thickness including surface roughness and elastic deformation, surface force of solvation and Van der Waals forces and load balance equations. Different values of surface amplitude and wavelength were simulated in addition to the load variation. Findings The simulation results revealed that roughness effects are important as the film thickness decreases. The oscillation in the pressure and film thickness is due to the combined action of the solvation force and surface topography parameters. The limiting values of the surface topography parameters of the amplitude and wavelength varied and depended on the load. For different values of wavelength and load, amplitude values up to 0.25 nm have no effect on ultrathin film formation. Originality/value The combined effect of the surface force and surface roughness on the formation of ultrathin films was evaluated for elastohydrodynamic lubrication of point contact problems under different operating conditions of load and surface topography parameters of amplitude and wavelength. The limited surface topography parameters of the amplitude and wavelength are shown and analyzed.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference17 articles.

1. Surface roughness effects for Newtonian and non-Newtonian lubricants;Tribology in Industry,2019

2. Effect of changing geometrical characteristics for different shape of a single ridge passing through elastohydrodynamic of point contacts;Industrial Lubrication and Tribology,2021

3. Nano-lubricant film formation due to combined elastohydrodynamic and surface force action under isothermal conditions;Proceedings of the Institution of Mechanical Engineers, Part C,2001

4. The drainage of thin liquid films between solid surfaces;The Journal of Chemical Physics,1984

5. Analysis of line contact elastohydrodynamic lubrication with the particles under rough contact surface;Advances in Materials Science and Engineering,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3