Wear behaviour of PMMA against 316L stainless steel under dry and lubricated conditions

Author:

Liza S.,Haseeb A.S.M.A.,Masjuki H.H.

Abstract

Purpose – The purpose of this paper was to gain a better understanding of wear behaviour of polymethylmethacrylate (PMMA) in contact with 316L stainless steel under different conditions (dry condition, distilled water and Ringer's solution). PMMA is commonly used in low-stress sliding application against metal. The effects of applied load and frequency on the wear rate of PMMA against 316L stainless steel were examined. Design/Methodology/Approach – Tests were conducted under dry condition, in distilled water and in Ringer’s solution by using reciprocating wear machine. Worn surface morphology and composition was evaluated by scanning electron microscopy. Findings – PMMA wear rate increases with the increase in applied load, naturally. An increase in sliding frequency increases the wear rate under dry condition, but it decreases the wear rate in water and in Ringer’s solution. Originality value – The objective of the present work was to gain a better understanding of the wear behaviour of PMMA in contact with 316L stainless steel under different conditions (dry condition, distilled water and Ringer's solution). The effects of applied normal load and frequency on the wear rate of PMMA against 316L stainless steel at various conditions were examined experimentally. This information may have future implications for the design of materials which have a contact with physiological fluid in orthopeadic implants.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3