Lubricated friction behaviour of thermal spray steel coated cylinder bores studied using a long-stroke reciprocating tribometer

Author:

Lou Ming,T. Alpas Ahmet

Abstract

Purpose This paper aims to study the effectiveness of using thermal spray (TS) coated bores in reducing friction under the mixed lubrication (ML) and elastohydrodynamic lubrication (EHL) regimes. Design/methodology/approach A reciprocating tribometer with a stroke length of 100 mm, was built to measure the coefficient of friction (COF) at the mid-stroke and ring reversal positions and to conduct sliding tests at a speed range of 0.31–3.14 m/s. Samples taken from fine-honed TS coated bores and also from cast iron (CI) liners that underwent a standard-honing process were tested against ring segments coated with chromium nitride (CrN) and diamond-like carbon. Findings Construction of Stribeck curves demonstrated that TS coatings showed a transition from ML to EHL at a lower speed (0.94 m/s) compared with CI (1.26 m/s) regardless of the counterfaces used. Lower COFs of 0.05–0.08 in ML was measured for TS coatings compared with those of 0.06–0.09 for CI in ML. Once EHL was reached, the COF of TS coatings decreased to 0.02–0.03 similar to those of CI. Examination of wear patterns suggested that the low roughness combined with high oil retention capability might be responsible for the reduced transition speed and the expanded EHL region for the TS coated surfaces. Originality/value With the EHL friction captured in a bidirectional sliding mode using a long-stroke tribometer, this work contributes to the understanding of the low-friction behaviour of TS coatings.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3