Author:
Sen Dilip Kumar,Datta Saurav,Mahapatra S.S.
Abstract
Purpose
– Robot selection is basically a task of choosing appropriate robot among available alternatives with respect to some evaluation criteria. The task becomes much more complicated since apart from objective criteria a number of subjective criteria need to be evaluated simultaneously. Plenty of decision support systems have been well documented in existing literature which considers either objective or subjective data set; however, decision support module with simultaneous consideration of objective as well as subjective data has rarely been attempted before. The paper aims to discuss these issues.
Design/methodology/approach
– Motivated by this, present work exhibits application potential of preference ranking organization method for enrichment evaluations (extended to operate under fuzzy environment) to solve decision-making problems which encounter both objective as well as subjective evaluation data.
Findings
– An empirical case study has been demonstrated in the context of robot selection problem. Finally, a sensitivity analysis has been performed to make the robot selection process more robust. A trade-off between objective criteria measure and subjective criteria measure has been shown using sensitivity analysis.
Originality/value
– Robot selection has long been viewed as an important decision-making scenario in the industrial context. Appropriate robot selection helps in enhancing value of the product and thereby, results in increased profitability for the manufacturing industries. The proposed decision support system considering simultaneous exploration of subjective as well as objective database is rarely attempted before.
Subject
Business and International Management,Strategy and Management
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献