Author:
Hajjar Mohammad,Hantouche Elie,El Ghor Ahmad
Abstract
Purpose
This study aims to develop a rational model to predict the thermal axial forces developed in shear tab connections with composite beams when subjected to transient-state fire temperatures.
Design/methodology/approach
Finite element (FE) models are first developed in ABAQUS and validated against experimental data available in the literature. Second, a parametric study is conducted to identify the major parameters that affect the behavior of shear tab connections with composite beams in the fire. This includes beam length, shear tab thickness, shear tab location, concrete slab thickness, setback distance and partial composite action. A design-oriented model is developed to predict the thermal induced axial forces during the heating and cooling phases of a fire event. The model consists of multi-linear springs that can predict the stiffness and strength of each component of the connection with the composite beam.
Findings
The FE results show that significant thermal axial forces are generated in the composite beam in the fire. This is prominent when the beam bottom flange comes in contact with the column. Fracture at the toe of the welds governs the behavior during the cooling phase in most FE simulations. Also, the rational model is validated against the FE results and is capable of predicting the thermal axial forces developed in shear tab connections with composite beams under different geometrical properties.
Originality/value
The proposed model can predict the thermal axial force demand and can be used in performance-based approaches in future structural fire engineering applications.
Subject
Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality
Reference33 articles.
1. Stability behavior of steel building structures in fire conditions: role of composite floor system with Shear-Tab connections;Journal of Structural Fire Engineering,2014
2. Experimental study on Long-Span composite floor beams subject to fire: baseline data at ambient temperature,2018
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献