In-plane stability of shallow concrete arches under fire

Author:

Bouras Yanni,Vrcelj Zora

Abstract

PurposeConcrete arch structures are commonly constructed for various civil engineering applications. Despite their frequent use, there is a lack of research on the response and performance of concrete arches when subjected to fire loading. Hence, this paper aims to investigate the response and in-plane failure modes of shallow circular concrete arches subjected to mechanical and fire loading.Design/methodology/approachThis study is conducted through the development of a three-dimensional finite element (FE) model in ANSYS. The FE model is verified by comparison to a non-discretisation numerical model derived herein and the reduced modulus buckling theory, both used for the non-linear inelastic analysis of shallow concrete arches subjected to uniformly distributed radial loading and uniform temperature field. Both anti-symmetric and symmetric buckling modes are examined, with analysis of the former requiring geometric imperfection obtained by an eigenvalue buckling analysis.FindingsThe FE results show that anti-symmetric bifurcation buckling is the dominant failure mode in shallow concrete arches under mechanical and fire loading. Additionally, parametric studies are presented which illustrate the influence of various parameters on fire resistance time.Originality/valueFire response of concrete arches has not been reported in the open literature. The authors have previously investigated the stability of shallow concrete arches subjected to mechanical and uniform thermal loading. It was found that temperature greatly reduced the buckling loads of concrete arches. However, this study was limited to the simplifying assumptions made which include elastic material behaviour and uniform temperature loading. The present study provides a realistic insight into the fire response and stability of shallow concrete arches. The findings herein may be adopted in the fire design of shallow concrete arches.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference50 articles.

1. Explicit modelling of large deflection behaviour of restrained reinforced concrete beams in fire;Engineering Structures,2016

2. Stress and deformation characteristics of concrete at high temperatures: experimental investigation and material behavior model;Bulletin,1976

3. In-plane bending and buckling of arches;Journal of the Structural Division,1971

4. Semi-analytical buckling analysis of reinforced concrete columns exposed to fire;Fire Safety Journal,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3