Experimental study on the influence of friction pair material hardness on the tribological behaviors of water lubricated thrust bearings

Author:

Liang Xingxin,Yang Zhiyong

Abstract

Purpose This paper aims to confirm that increasing the hardness of thrust collars can improve the load carrying capacity (LCC) and wear resistance of water lubricated thrust bearings (WTBs) made of polymers paired with non-polymeric thrust collars, and to design a WTB with high LCC and durability for a shaftless pump-jet propulsor of an autonomous underwater vehicle. Six kinds of WTBs were manufactured by matching aluminum bronze, stainless steel and silicon nitride with two different polymer bearing materials. Their tribological behaviors were tested and compared. Design/methodology/approach The tribological behaviors of the WTBs made with different materials were investigated experimentally on a specially designed test rig. Findings Aluminum bronze is not suitable for crafting thrust collars of heavy load WTBs due to severe abrasive wear. Two body abrasive wear first occurred between the thrust collar and the polymer bearing. Next, aluminum bronze wear particles were produced. The particles acted between the two materials and formed three body abrasive wear. Stainless steel/polymer bearings showed better wear resistance while Si3N4/polymer bearings were the best. Improving the hardness of thrust collars is significant to the LCC and service life of WTBs. Originality/value The wear mechanism of WTBs under heavy load conditions was revealed. Improving the hardness of the thrust collar was confirmed to be a preferable method to improve the wear resistance and LCC of WTBs. The results of this study may provide an important reference for the selection of water lubricated materials and the design of heavy load WTBs.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3