Numerical study on steady state performance enhancement of partial textured hydrodynamic journal bearing

Author:

Sharma Sanjay,Jamwal Gourav,Awasthi R.K.

Abstract

Purpose The purpose of this paper is to provide the various steady state parameters of hydrodynamic journal bearings have been determined to get maximum performance enhancement ratio. For this, the bearings inner surface is textured with triangular shape with different texture depths and a number of textures in pressure increasing region. The textured region acts as a lubricant reservoir, which provides additional film-thickness and reduce friction. Therefore, enhance the overall performance of bearing. Design/methodology/approach In the present study, the effect of triangular shaped texture on the static performance characteristics of a hydrodynamic journal bearing has been studied. Different values of texture depths and a number of textures have been numerically simulated in pressure developing region. The static performance characteristics have been calculated by solving the fluid flow governing Reynolds equation using the finite element method, assuming iso-viscous Newtonian fluid. The performance enhancement ratio, which is the ratio of load carrying capacity (LCC) to the coefficient of friction (COF) has been calculated from results to finalized optimum design parameters. Findings The paper provides numerically obtained results indicate that surface texturing can improve bearing performance if the textured region is placed in the pressure increasing region. Moreover, surface texturing is the most effective at bearing performance enhancement when the bearing operates at lower eccentricity ratios and texture depth. The performance enhancement ratio, which is the ratio of LCC to the COF is found to be a maximum value of 2.198 at texture depth of 1.5, eccentricity ratio of 0.2 and the textured region located in the increasing pressure region. Research limitations/implications The present study is based on a numerical based research approach, which has its limitations. So, researchers are encouraged to investigate the same work experimentally. Practical implications The paper includes implications to be beneficial for designers for designing better hydrodynamic journal bearings. Originality/value For the triangular shaped texture, considered in the present study, the optimum values of texture depth and texture distribution region have also been determined. While designing, designers should focus on those values of texture depth, texture region and a number of textures, which give the maximum value of performance enhancement ratio, which represents maximum LCC at the lowest value of the COF.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference22 articles.

1. An experimental investigation on frictional behavior of statically loaded micro-grooved journal bearing;Tribology International,2011

2. A study of steady state and transient performance characteristics of a flexible shell journal bearing;Tribology International,1988

3. Numerical investigation of parallel and quasi-parallel slider bearings operating under ThermoElastoHydroDynamic (TEHD) regime;Tribology International,2018

4. Hydrodynamic lubrication of textured steel surfaces under reciprocating sliding conditions;Tribology International,2007

5. A critical assessment of surface texturing for friction and wear improvement;Wear,2017

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3