Experimental study on the friction stability of paper-based clutches concerning groove patterns

Author:

Yu Liang,Ma Biao,Chen Man,Li He Yan,Liu Jikai

Abstract

Purpose This paper aims to study and compare the friction stability of wet paper-based clutches with regard to the radial grooves (RG) and waffle grooves (WG). Design/methodology/approach This paper presents an experimental study of a wet clutch concerning the effect of groove patterns on the friction torque and surface temperature. The friction stabilities of RG and WG are investigated with the applied pressure, rotating speed and automatic transmission fluid (ATF) temperature taken into consideration. Findings The friction torque and surface temperature of WG are larger than those of RG under the same operating condition. The friction torque difference between RG and WG grows with the increase of applied pressure and narrows with the increase of ATF temperature. Additionally, their temperature difference expands via increasing the rotating speed and ATF temperature or reducing the applied pressure; in this way, not only the variable coefficient difference between RG and WG can be narrowed, but also the friction stability of the clutch can be improved dramatically. Originality/value This paper explains the thermodynamic differences between RG and WG; moreover, it is verified experimentally that WG has a better friction stability than RG.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3