Some results on quadratic credibility premium using the balanced loss function

Author:

Metiri Farouk,Zeghdoudi HalimORCID,Saadoun Ahmed

Abstract

PurposeThis paper generalizes the quadratic framework introduced by Le Courtois (2016) and Sumpf (2018), to obtain new credibility premiums in the balanced case, i.e. under the balanced squared error loss function. More precisely, the authors construct a quadratic credibility framework under the net quadratic loss function where premiums are estimated based on the values of past observations and of past squared observations under the parametric and the non-parametric approaches, this framework is useful for the practitioner who wants to explicitly take into account higher order (cross) moments of past data.Design/methodology/approachIn the actuarial field, credibility theory is an empirical model used to calculate the premium. One of the crucial tasks of the actuary in the insurance company is to design a tariff structure that will fairly distribute the burden of claims among insureds. In this work, the authors use the weighted balanced loss function (WBLF, henceforth) to obtain new credibility premiums, and WBLF is a generalized loss function introduced by Zellner (1994) (see Gupta and Berger (1994), pp. 371-390) which appears also in Dey et al. (1999) and Farsipour and Asgharzadhe (2004).FindingsThe authors declare that there is no conflict of interest and the funding information is not applicable.Research limitations/implicationsThis work is motivated by the following: quadratic credibility premium under the balanced loss function is useful for the practitioner who wants to explicitly take into account higher order (cross) moments and new effects such as the clustering effect to finding a premium more credible and more precise, which arranges both parts: the insurer and the insured. Also, it is easy to apply for parametric and non-parametric approaches. In addition, the formulas of the parametric (Poisson–gamma case) and the non-parametric approach are simple in form and may be used to find a more flexible premium in many special cases. On the other hand, this work neglects the semi-parametric approach because it is rarely used by practitioners.Practical implicationsThere are several examples of actuarial science (credibility).Originality/valueIn this paper, the authors used the WBLF and a quadratic adjustment to obtain new credibility premiums. More precisely, the authors construct a quadratic credibility framework under the net quadratic loss function where premiums are estimated based on the values of past observations and of past squared observations under the parametric and the non-parametric approaches, this framework is useful for the practitioner who wants to explicitly take into account higher order (cross) moments of past data.

Publisher

Emerald

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3