Numerical analysis of natural convection heat transfer and entropy generation in a porous quadrantal cavity

Author:

Dutta Shantanu,Biswas Arup Kumar,Pati Sukumar

Abstract

Purpose The purpose of this paper is to analyze the natural convection heat transfer and irreversibility characteristics in a quadrantal porous cavity subjected to uniform temperature heating from the bottom wall. Design/methodology/approach Brinkmann-extended Darcy model is used to simulate the momentum transfer in the porous medium. The Boussinesq approximation is invoked to account for the variation in density arising out of the temperature differential for the porous quadrantal enclosure subjected to uniform heating on the bottom wall. The governing transport equations are solved using the finite element method. A parametric study is carried out for the Rayleigh number (Ra) in the range of 103 to 106 and Darcy number (Da) in the range of 10−5-10−2. Findings A complex interaction between the buoyant and viscous forces that govern the transport of heat and entropy generation and the permeability of the porous medium plays a significant role on the same. The effect of Da is almost insignificant in dictating the heat transfer for low values of Ra (103, 104), while there is a significant alteration in Nusselt number for Ra ≥105 and moreover, the change is more intense for larger values of Da. For lower values of Ra (≤104), the main contributor of irreversibility is the thermal irreversibility irrespective of all values of Da. However, the fluid friction irreversibility is the dominant player at higher values of Ra (=106) and Da (=10−2). Practical implications From an industrial point of view, the present study will have applications in micro-electronic devices, building systems with complex geometries, solar collectors, electric machinery and lubrication systems. Originality/value This research examines numerically the buoyancy driven heat transfer irreversibility in a quadrantal porous enclosure that is subjected to uniform temperature heating from the bottom wall, that was not investigated in the literature before.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference45 articles.

1. Analysis of natural convection via entropy generation approach in porous rhombic enclosures for various thermal aspect ratios;International Journal of Heat and Mass Transfer,2013

2. Natural convection in a quadrantal cavity heated and cooled on adjacent walls;Journal of Heat Transfer,2011

3. Thermal non-equilibrium natural convection in a square enclosure with heat-generating porous layer on inner walls;Transport in Porous Media,2017

4. Free convection in oblique enclosures filled with a porous medium;International Journal of Heat and Mass Transfer,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3