Author:
Dutta Shantanu,Biswas Arup Kumar,Pati Sukumar
Abstract
Purpose
The purpose of this paper is to analyze the natural convection heat transfer and irreversibility characteristics in a quadrantal porous cavity subjected to uniform temperature heating from the bottom wall.
Design/methodology/approach
Brinkmann-extended Darcy model is used to simulate the momentum transfer in the porous medium. The Boussinesq approximation is invoked to account for the variation in density arising out of the temperature differential for the porous quadrantal enclosure subjected to uniform heating on the bottom wall. The governing transport equations are solved using the finite element method. A parametric study is carried out for the Rayleigh number (Ra) in the range of 103 to 106 and Darcy number (Da) in the range of 10−5-10−2.
Findings
A complex interaction between the buoyant and viscous forces that govern the transport of heat and entropy generation and the permeability of the porous medium plays a significant role on the same. The effect of Da is almost insignificant in dictating the heat transfer for low values of Ra (103, 104), while there is a significant alteration in Nusselt number for Ra ≥105 and moreover, the change is more intense for larger values of Da. For lower values of Ra (≤104), the main contributor of irreversibility is the thermal irreversibility irrespective of all values of Da. However, the fluid friction irreversibility is the dominant player at higher values of Ra (=106) and Da (=10−2).
Practical implications
From an industrial point of view, the present study will have applications in micro-electronic devices, building systems with complex geometries, solar collectors, electric machinery and lubrication systems.
Originality/value
This research examines numerically the buoyancy driven heat transfer irreversibility in a quadrantal porous enclosure that is subjected to uniform temperature heating from the bottom wall, that was not investigated in the literature before.
Subject
Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Reference45 articles.
1. Analysis of natural convection via entropy generation approach in porous rhombic enclosures for various thermal aspect ratios;International Journal of Heat and Mass Transfer,2013
2. Natural convection in a quadrantal cavity heated and cooled on adjacent walls;Journal of Heat Transfer,2011
3. Thermal non-equilibrium natural convection in a square enclosure with heat-generating porous layer on inner walls;Transport in Porous Media,2017
4. Free convection in oblique enclosures filled with a porous medium;International Journal of Heat and Mass Transfer,1999
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献