Abstract
Purpose
The existing literature on the Black-Litterman (BL) model does not offer adequate guidance on how to generate investors’ views in an objective manner. Therefore, the purpose of this paper is to establish a generalized multivariate Vector Error Correction Model (VECM)/Vector Auto-Regressive (VAR)-Dynamic Conditional Correlation (DCC)/Asymmetric DCC (ADCC) framework, and applies it to generate objective views to improve the practicality of the BL model.
Design/methodology/approach
This paper establishes a generalized VECM/VAR-DCC/ADCC framework that can be utilized to model multivariate financial time series in general, and produce objective views as inputs to the BL model in particular. To test the VECM/VAR-DCC/ADCC preconditioned BL model’s practical utility, it is applied to a six-asset China portfolio (including one risk-free asset).
Findings
With dynamically optimized view confidence parameters, the VECM/VAR-DCC/ADCC preconditioned BL model offers clear advantage over the standard mean-variance method, and provides an automated portfolio optimization alternative to the classic BL approach.
Originality/value
The VECM/VAR-DCC/ADCC framework and its application in the BL model proposed by this paper provide an alternative approach to the classic BL method. Since all the view parameters, including estimated mean return vectors, conditional covariance matrices and pick matrices, are generated in the VECM/VAR and DCC/ADCC preconditioning stage, the model improves the objectiveness of the inputs to the BL stage. In conclusion, the proposed model offers a practical choice for automated portfolio balancing and optimization in a China context.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献