Measurement of city road network resilience in hazardous flood events

Author:

M.S. Mukesh,Katpatal Yashwant B.,Londhe Digambar S.

Abstract

Purpose Recently, the serviceability of the transportation infrastructure in urban areas has become crucial. Any impact of the hazardous conditions on the urban road network causes significant disruption to the functioning of the urban region, making the city’s resilience a point of concern. Thereby, the purpose of the study is to examine the city’s recovery capacity to absorb the impacts of adverse events like urban floods. Design/methodology/approach This study examines the road network resilience for an urban flood event for zones proposed by the Municipal Corporation to develop multiple central business districts. This study proposes a novel approach to measure the resilience of road networks in an urban region under floods caused due to heavy rainfall. A novel Road Network Resilience Index (RNRI) based on the serviceability of the road network during floods is proposed, estimated using Analytic Hierarchy Process - Multiple Criteria Evaluation (AHP-MCE) approaches by using the change in street centrality, impervious area and road network density. This study examines and analyses the resilience of road networks in two conditions: flood and nonflood conditions. Resilience was estimated for both the conditions at the city level and the decentralized zone level. Findings Based on RNRI values, this study identifies zones having a lower or higher resilience index. The central, southern and eastern zones have lower road network resilience and western and northern zones have high road network resilience. Practical implications The proposed methodology can be used to increase road network resilience within the city under flood conditions. Originality/value The previous literature on road network resilience concentrates on the physical properties of roads after flood events. This study demonstrates the use of nonstructural measures to improve the resilience of the road network by innovatively using the AHP-MCE approach and street centrality to measure the resilience of the road network.

Publisher

Emerald

Subject

Safety, Risk, Reliability and Quality,Building and Construction

Reference41 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3