The application of a hybrid simulation modelling framework as a decision-making tool for TPM improvement

Author:

Oleghe OmogbaiORCID,Salonitis Konstantinos

Abstract

Purpose The purpose of this paper is to promote a system dynamics-discrete event simulation (SD-DES) hybrid modelling framework, one that is useful for investigating problems comprising multifaceted elements which interact and evolve over time, such as is found in TPM. Design/methodology/approach The hybrid modelling framework commences with system observation using field notes which culminate in model conceptualization to structure the problem. Thereafter, an SD-DEShybrid model is designed for the system, and simulated to proffer improvement programmes. The hybrid model emphasises the interactions between key constructs relating to the system, feedback structures and process flow concepts that are the hallmarks of many problems in production. The modelling framework is applied to the TPM operations of a bottling plant where sub-optimal TPM performance was affecting throughput performance. Findings Simulation results for the case study show that intangible human factors such as worker motivation do not significantly affect TPM performance. What is most critical is ensuring full compliance to routine and scheduled maintenance tasks and coordinating the latter to align with rate of machine defect creation. Research limitations/implications The framework was developed with completeness, generality and reuse in view. It remains to be applied to a wide variety of TPM and non-TPM-related problems. Practical implications The developed hybrid model is scalable and can fit into an existing discrete event simulation model of a production system. The case study findings indicate where TPM managers should focus their efforts. Originality/value The investigation of TPM using SD-DES hybrid modelling is a novelty.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Safety, Risk, Reliability and Quality

Reference58 articles.

1. A hybrid simulation model for green logistics assessment in automotive industry;Procedia Engineering,2015

2. An evaluation of TPM initiatives in Indian industry for enhanced manufacturing performance;International Journal of Quality & Reliability Management,2008

3. A review on condition-based maintenance optimization models for stochastically deteriorating system;Reliability Engineering & System Safety,2017

4. State of the art in simulation-based optimisation for maintenance systems;Computers & Industrial Engineering,2015

5. Modeling framework and architecture of hybrid system dynamics and discrete event simulation for construction;Computer-Aided Civil and Infrastructure Engineering,2011

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3