Insitu SVET studies on the current density distribution on dissolving of Mg, MgZn2, Mg2Si and Al4Cu2Mg8Si7 surfaces in NaCl solutions

Author:

Ikeuba Alexander I.,Okafor Peter C.,Ita Benedict,Obike Anthony I.,Abeng Fidelis E.,Essien Uduak,Bamigbola Abiola

Abstract

Purpose This paper aims to acquire the current density distribution on dissolving of Mg, MgZn2 (η -phase), Mg2Si (ß-phase) and Al4Cu2Mg8Si7 (Q-phase) surface in NaCl solutions. Design/methodology/approach MgZn2 (η -phase), Mg2Si (ß-phase) and Al4Cu2Mg8Si7 (Q-phase) are important intermetallic compounds found in aluminum alloys. Insitu scanning vibrating electrode technique (SVET) was used to acquire the current density distribution on dissolving of Mg, MgZn2 (η -phase), Mg2Si (ß-phase) and Al4Cu2Mg8Si7 (Q-phase) surface in NaCl solutions scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) was used to characterize the corroded surface. Findings SVET maps reveal that these compounds display characteristic dissolution features. Mg and MgZn2 displayed localized anodic and cathodic sites while that of Al4Cu2Mg8Si7 > Mg2Si displayed a diffused distribution of anodic and cathodic sites. The magnitude of the integrated anodic current densities on the compounds was noted to decrease with the progress of time, and the order of the magnitude of the current density with respect to the compounds is Mg > Mg2Si > Al4Cu2Mg8Si7 > MgZn2. SEM/EDX reveal that the highest mass loss recorded after the SVET test was manifested by Mg2Si followed by MgZn2 then Al4Cu2Mg8Si7. Originality/value Auxiliary information on the current density distribution on the corroding sample surface at the microscopic scale has been provided by SVET thereby taking care of certain limitations of traditional corrosion monitoring techniques such as gravimetric, hydrogen evolution and electrochemical measurements.

Publisher

Emerald

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3