Integration of fault-tolerant feature to OMIEEPB routing protocol in wireless sensor network

Author:

Nasurulla I.ORCID,Kaniezhil R.

Abstract

PurposeWhereas a human operator is hard to observe the networking infrastructure and its functions on a continuous basis, wireless sensor network (WSN) nodes must overcome faults and route the perceived data to the sink/base stations (BS). The main target of this research article is to ensure the fault-tolerance (FT) capability, especially for transmission of sensed data to its destination without failure. Thus, through this paper, a fuzzy-based subordinate support (FSS) system is introduced as an additional feature to the existing optimized mobile sink improved energy efficient Power-Efficient Gathering in Sensor Information Systems (PEGASIS)-based (OMIEEPB) routing protocol, which lacks focus on ensuring the FT capabilities to the selected leaders of the corresponding chain. The central focus of FSS is to prevent the incident of fault, especially to the cluster heads.Design/methodology/approachWSNs encounter several issues owing to random events or different causes such as energy exhaustion, negative influences of the deployed region, signal interference, unbalanced supply routes, instability of motes due to misalignments and collision, which ultimately intends the failure of the network. Throughout the past investigation periods, researchers gain an understanding of fault-tolerant strategies that may improve the data integrity or reliability, precision, energy efficiency, the life expectancy of the system and reduce/prevent the failure of deployed components. If that is the case, the maximum chances of data packets (sensed) needed to be transferred reliably and accurately to the sink node or BS are degraded.FindingsThe FSS system utilizes the fuzzy logic concepts that have been proved to be beneficial since it permits several parameters to be combined effectively and evaluated. Here, near-point, residual energy, total operation time and past average processing time are considered as vital parameters. Moreover, the FSS system ensures the key performance activities of the network, such as optimization of response time, enhancing the data transmission reliability and accuracy. Simulation-based experiments are carried out through the Mannasim framework. After several experimental executions, the outcome of the proposed system is analyzed through elaborated comparison with the advanced existing systems.Originality/valueFinally, it has been observed that the FSS system not only enhanced the FT features to OMIEEPB but also assures the improved accuracy level (>95%) with optimized response time (<0.09 s) during data communication between leaders and the normal nodes.

Publisher

Emerald

Subject

General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3