An improved peak side lobe reduction method for linear array antenna for military applications

Author:

D Ravi Tej,K Sri Kavya Ch,Kotamraju Sarat K.

Abstract

PurposeThe purpose of this paper is to improve energy efficiency and further reduction of side lobe level the algorithm proposed is firework algorithm. In this paper, roused by the eminent swarm conduct of firecrackers, a novel multitude insight calculation called fireworks algorithm (FA) is proposed for work enhancement. The FA is introduced and actualized by mimicking the blast procedure of firecrackers. In the FA, two blast (search) forms are utilized and systems for keeping decent variety of sparkles are likewise all around planned. To approve the presentation of the proposed FA, correlation tests were led on nine benchmark test capacities among the FA, the standard PSO (SPSO) and the clonal PSO (CPSO).Design/methodology/approachThe antenna arrays are used to improve the capacity and spectral efficiency of wireless communication system. The latest communication systems use the antenna array technology to improve the spectral efficiency, fill rate and the energy efficiency of the communication system can be enhanced. One of the most important properties of antenna array is beam pattern. A directional main lobe with low side lobe level (SLL) of the beam pattern will reduce the interference and enhance the quality of communication. The classical methods for reducing the side lobe level are differential evolution algorithm and PSO algorithm. In this paper, roused by the eminent swarm conduct of firecrackers, a novel multitude insight calculation called fireworks algorithm (FA) is proposed for work enhancement. The FA is introduced and actualized by mimicking the blast procedure of firecrackers. In the FA, two blast (search) forms are utilized and systems for keeping decent variety of sparkles are likewise all around planned. To approve the presentation of the proposed FA, correlation tests were led on nine benchmark test capacities among the FA, the standard PSO (SPSO) and the clonal PSO (CPSO). It is demonstrated that the FA plainly beats the SPSO and the CPSO in both enhancement exactness and combination speed. The results convey that the side lobe level is reduced to −34.78dB and fill rate is increased to 78.53.FindingsSamples including 16-element LAAs are conducted to verify the optimization performances of the SLL reductions. Simulation results show that the SLLs can be effectively reduced by FA. Moreover, compared with other benchmark algorithms, fireworks has a better performance in terms of the accuracy, the convergence rate and the stability.Research limitations/implicationsWith the use of algorithms radiation is prone to noise one way or other. Even with any optimizations we cannot expect radiation to be ideal. Power dissipation or electro magnetic interference is bound to happen, but the use of optimization algorithms tries to reduce them to the extent that is possible.Practical implications16-element linear antenna array is available with latest versions of Matlab.Social implicationsThe latest technologies and emerging developments in the field of communication and with exponential growth in users the capacity of communication system has bottlenecks. The antenna arrays are used to improve the capacity and spectral efficiency of wireless communication system. The latest communication systems use the antenna array technology which is to improve the spectral efficiency, fill rate and the energy efficiency of the communication system can be enhanced.Originality/valueBy using FA, the fill rate is increased to 78.53 and the side lobe level is reduced to 35dB, when compared with the bench mark algorithms.

Publisher

Emerald

Subject

General Computer Science

Reference24 articles.

1. Design, optimization and realization of compact bandpass filter using two identical square open-loop resonators for wireless communications systems;Journal of Instrumentation,2019

2. Evolutionary hybrid particle swarm optimization algorithm to minimize makespan toschedule a flow SHOP with NO wait;Journal of Engineering Science and Technology,2019

3. A low volume flexible CPW-fed elliptical-ring with split-triangular patch dual-band antenna;International Journal of RF and Microwave Computer-Aided Engineering,2019

4. Liquid crystal polymer based flexible and conformal 5G antenna for vehicular communication;Materials Research Express,2018

5. Design, optimization and realization of high gain RFID array antenna for detection system of objects in motion;Journal of Instrumentation,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3