Integrated vision-based system for efficient, semi-automated control of a robotic manipulator

Author:

Jiang Hairong,P. Wachs Juan,S. Duerstock Bradley

Abstract

Purpose – The purpose of this paper is to develop an integrated, computer vision-based system to operate a commercial wheelchair-mounted robotic manipulator (WMRM). In addition, a gesture recognition interface system was developed specially for individuals with upper-level spinal cord injuries including object tracking and face recognition to function as an efficient, hands-free WMRM controller. Design/methodology/approach – Two Kinect® cameras were used synergistically to perform a variety of simple object retrieval tasks. One camera was used to interpret the hand gestures and locate the operator's face for object positioning, and then send those as commands to control the WMRM. The other sensor was used to automatically recognize different daily living objects selected by the subjects. An object recognition module employing the Speeded Up Robust Features algorithm was implemented and recognition results were sent as a commands for “coarse positioning” of the robotic arm near the selected object. Automatic face detection was provided as a shortcut enabling the positing of the objects close by the subject's face. Findings – The gesture recognition interface incorporated hand detection, tracking and recognition algorithms, and yielded a recognition accuracy of 97.5 percent for an eight-gesture lexicon. Tasks’ completion time were conducted to compare manual (gestures only) and semi-manual (gestures, automatic face detection, and object recognition) WMRM control modes. The use of automatic face and object detection significantly reduced the completion times for retrieving a variety of daily living objects. Originality/value – Integration of three computer vision modules were used to construct an effective and hand-free interface for individuals with upper-limb mobility impairments to control a WMRM.

Publisher

Emerald

Subject

General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3