Robust multifocus deep neural network for progression prediction on patient trajectory data

Author:

Arunkumar K.ORCID,Vasundra S.

Abstract

PurposePatient treatment trajectory data are used to predict the outcome of the treatment to particular disease that has been carried out in the research. In order to determine the evolving disease on the patient and changes in the health due to treatment has not considered existing methodologies. Hence deep learning models to trajectory data mining can be employed to identify disease prediction with high accuracy and less computation cost.Design/methodology/approachMultifocus deep neural network classifiers has been utilized to detect the novel disease class and comorbidity class to the changes in the genome pattern of the patient trajectory data can be identified on the layers of the architecture. Classifier is employed to learn extracted feature set with activation and weight function and then merged on many aspects to classify the undetermined sequence of diseases as a new variant. The performance of disease progression learning progress utilizes the precision of the constituent classifiers, which usually has larger generalization benefits than those optimized classifiers.FindingsDeep learning architecture uses weight function, bias function on input layers and max pooling. Outcome of the input layer has applied to hidden layer to generate the multifocus characteristics of the disease, and multifocus characterized disease is processed in activation function using ReLu function along hyper parameter tuning which produces the effective outcome in the output layer of a fully connected network. Experimental results have proved using cross validation that proposed model outperforms methodologies in terms of computation time and accuracy.Originality/valueProposed evolving classifier represented as a robust architecture on using objective function to map the data sequence into a class distribution of the evolving disease class to the patient trajectory. Then, the generative output layer of the proposed model produces the progression outcome of the disease of the particular patient trajectory. The model tries to produce the accurate prognosis outcomes by employing data conditional probability function. The originality of the work defines 70% and comparisons of the previous methods the method of values are accurate and increased analysis of the predictions.

Publisher

Emerald

Subject

General Computer Science

Reference24 articles.

1. Early drift detection method,2006

2. SNCStream: a social network-based data stream clustering algorithm,2015

3. Gaussian processes for personalized e-health monitoring with wearable sensors;IEEE Transactions on Biomedical Engineering,2013

4. An extreme function theory for novelty detection;IEEE Journal of Selected Topics in Signal Processing,2013

5. Incremental learning of new classes in unbalanced datasets: learn++.UDNC;Multiple Classifier Systems,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3