Role of process parameters during additive manufacturing by direct metal deposition of Inconel 718

Author:

Chen BoORCID,Mazumder Jyoti

Abstract

Purpose The aim of this research is to study the influence of laser additive manufacturing process parameters on the deposit formation characteristics of Inconel 718 superalloy, the main parameters that influence the forming characteristics, the cooling rate and the microstructure were studied. Design/methodology/approach Orthogonal experiment design method was used to obtain different deposit shape and microstructure using different process parameters by multiple layers deposition. The relationship between the processing parameters and the geometry of the cladding was analyzed, and the dominant parameters that influenced the cladding width and height were identified. The cooling rates of different forming conditions were obtained by the secondary dendrite arm spacing (SDAS). Findings The microstructure showed different characteristics at different parts of the deposit. Cooling rate of different samples were obtained and compared by using the SDAS, and the influence of the process parameters to the cooling rate was analyzed. Finally, micro-hardness tests were done, and the results were found to be in accordance with the micro-structure distribution. Originality/value Relationships between processing parameters and the forming characteristics and the cooling rates were obtained. The results obtained in this paper will help to understand the relationship between the process parameters and the forming quality of the additive manufacturing process, so as to obtain the desired forming quality by appropriate parameters.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference28 articles.

1. The effect of cooling rate on the solidification of INCONEL 718;Metallurgical and Materials Transactions B,2005

2. Effect of overlap rate on recrystallization behaviors of Laser Solid Formed Inconel 718 superalloy;Optics & Laser Technology,2013

3. The solidification metallurgy of alloy 718 and other Nb-containing superalloys;Superalloy,1989

4. Effect of inter-layer dwell time on distortion and residual stress in additive manufacturing of titanium and nickel alloys;Journal of Materials Processing Technology,2015

5. Texture control during laser deposition of nickel-based superalloy;Scripta Materialia,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3