Collecting and evaluating large volumes of bibliographic metadata aggregated in the WorldCat database: a proposed methodology to overcome challenges

Author:

Zavalin Vyacheslav I.,Miksa Shawne D.

Abstract

Purpose This paper aims to discuss the challenges encountered in collecting, cleaning and analyzing the large data set of bibliographic metadata records in machine-readable cataloging [MARC 21] format. Possible solutions are presented. Design/methodology/approach This mixed method study relied on content analysis and social network analysis. The study examined subject representation in MARC 21 metadata records created in 2020 in WorldCat – the largest international database of “big smart data.” The methodological challenges that were encountered and solutions are examined. Findings In this general review paper with a focus on methodological issues, the discussion of challenges is followed by a discussion of solutions developed and tested as part of this study. Data collection, processing, analysis and visualization are addressed separately. Lessons learned and conclusions related to challenges and solutions for the design of a large-scale study evaluating MARC 21 bibliographic metadata from WorldCat are given. Overall recommendations for the design and implementation of future research are suggested. Originality/value There are no previous publications that address the challenges and solutions of data collection and analysis of WorldCat’s “big smart data” in the form of MARC 21 data. This is the first study to use a large data set to systematically examine MARC 21 library metadata records created after the most recent addition of new fields and subfields to MARC 21 Bibliographic Format standard in 2019 based on resource description and access rules. It is also the first to focus its analyzes on the networks formed by subject terms shared by MARC 21 bibliographic records in a data set extracted from a heterogeneous centralized database WorldCat.

Publisher

Emerald

Subject

Library and Information Sciences,Computer Science Applications

Reference37 articles.

1. Information science: what is it?;American Documentation,1968

2. Big data, big metadata and quantitative study of science: a workflow model for big scientometrics;Proceedings of the 80th ASISandT Annual Meeting,2017

3. Understanding semantic web: a conceptual model;Library Review,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3