Optimal insurance risk allocation with steepest ascent and genetic algorithms

Author:

Ha SiewMun

Abstract

PurposeEnhanced risk management through the application of mathematical optimization is the next competitive‐advantage frontier for the primary‐insurance industry. The widespread adoption of catastrophe models for risk management provides the opportunity to exploit mathematical optimization techniques to achieve superior financial results over traditional methods of risk allocation. The purpose of this paper is to conduct a numerical experiment to evaluate the relative performances of the steepest‐ascent method and genetic algorithm in the solution of an optimal risk‐allocation problem in primary‐insurance portfolio management.Design/methodology/approachThe performance of two well‐established optimization methods – steepest ascent and genetic algorithm – are evaluated by applying them to solve the problem of minimizing the catastrophe risk of a US book of policies while concurrently maintaining a minimum level of return.FindingsThe steepest‐ascent method was found to be functionally dependent on, but not overly sensitive to, choice of initial starting policy. The genetic algorithm produced a superior solution to the steepest‐ascent method at the cost of increased computation time.Originality/valueThe results provide practical guidelines for algorithm selection and implementation for the reader interested in constructing an optimal insurance portfolio from a set of available policies.

Publisher

Emerald

Subject

Finance

Reference9 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial intelligence model for building investment portfolio optimization mix using historical stock prices data;Rajagiri Management Journal;2021-05-05

2. PORTFOLIO OPTIMIZATION USING WIND DRIVEN OPTIMIZATION TECHNIQUE;Advances and Applications in Statistics;2018-09-18

3. Applications of Catastrophe Modelling;Natural catastrophe risk management and modelling;2017-04-26

4. Analyzing the determinants of the voting behavior using a genetic algorithm;European Research on Management and Business Economics;2016-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3