The Tower of Babel problem: making data make sense with Basic Formal Ontology

Author:

Iliadis AndrewORCID

Abstract

PurposeApplied computational ontologies (ACOs) are increasingly used in data science domains to produce semantic enhancement and interoperability among divergent data. The purpose of this paper is to propose and implement a methodology for researching the sociotechnical dimensions of data-driven ontology work, and to show how applied ontologies are communicatively constituted with ethical implications.Design/methodology/approachThe underlying idea is to use a data assemblage approach for studying ACOs and the methods they use to add semantic complexity to digital data. The author uses a mixed methods approach, providing an analysis of the widely used Basic Formal Ontology (BFO) through digital methods and visualizations, and presents historical research alongside unstructured interview data with leading experts in BFO development.FindingsThe author found that ACOs are products of communal deliberation and decision making across institutions. While ACOs are beneficial for facilitating semantic data interoperability, ACOs may produce unintended effects when semantically enhancing data about social entities and relations. ACOs can have potentially negative consequences for data subjects. Further critical work is needed for understanding how ACOs are applied in contexts like the semantic web, digital platforms, and topic domains. ACOs do not merely reflect social reality through data but are active actors in the social shaping of data.Originality/valueThe paper presents a new approach for studying ACOs, the social impact of ACO work, and describes methods that may be used to produce further applied ontology studies.

Publisher

Emerald

Subject

Library and Information Sciences,Computer Science Applications,Information Systems

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3