Author:
Guan Dong,Hilton Harry H.,Yang Zhengwei,Jing Li,Lu Kuan
Abstract
Purpose
This paper aims to investigate the lubrication regime in spherical pump, especially under different structural parameters and operational conditions.
Design/methodology/approach
A ball-on-plane configuration is adopted to represent the contact model between spherical piston and cylinder cover. The governing equations, which include the Reynolds and elasticity equations, are solved and validated by Jin–Dowson model. Both minimum film thickness and lambda ratio (ratio of minimum fluid film thickness to combined surface roughness of the piston and cylinder cover) of the equivalent model are obtained using an established model.
Findings
The results indicate that piston diameter and radial clearance are the two main factors affecting the pump lubrication regime. Other related parameters such as rotation speed of the piston, load, viscosity of working medium, material matching and surface roughness of piston and cylinder cover also have different impacts on the lubrication regime of the spherical pump.
Originality/value
These results emphasize the importance of the design and manufacturing parameters on the tribological performance of spherical pumps and these are also helpful in improving the spherical pump lubrication regime and enlarging its life cycle. This is to certify that to the best of the authors’ knowledge, the content of this manuscript is their own work. This manuscript has only been submitted to this journal and never been published elsewhere. The authors certify that the intellectual content of this manuscript is the product of their own work and that all the assistance received in preparing this manuscript and sources has been acknowledged.
Subject
Surfaces, Coatings and Films,General Energy,Mechanical Engineering
Reference28 articles.
1. Measurement of tangential contact hysteresis during microslip;Journal of Tribology,2004
2. A 3D-printed, functionally graded soft robot powered by combustion;Science (New York, N.Y.),2015
3. Mechanism design for robots,2014
4. How to use 3D printing for feasibility check of mechanism design,2016
5. Numerical analysis of time-varying fluid film thickness in metal-metal hip implants in simulator tests,1998
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献