Numerical analysis of water-lubricated thrust bearing with groove texture considering turbulence and cavitation

Author:

Feng Huihui,Peng Liping

Abstract

Purpose This paper aims to establish the mathematical models for the water-lubricated thrust bearing with groove texture considering turbulence and cavitation and numerically analyze the influence of rotary speed, texture depth, groove number and groove width on the static performance of the bearing. Design/methodology/approach The turbulent Reynolds equation and the Jakobsson–Floberg–Olsson cavitation model are adopted for the analysis. The Payvar–Salant algorithm and Finite difference schemes are used to discretize the governing equations. To illustrate the influence of turbulence, the performance of the bearing predicted by the turbulent and laminar models are compared. Findings According to the results, the load capacity and the friction force calculated by the turbulent model are greater than those obtained by laminar model, and the deviation between them gradually increases with the increased rotary speed. So, the turbulent effect should be fully considered for high-speed water-lubricated bearing with surface texture. There exists a peak value for the load capacity of the water-lubricated thrust bearing in respect to the texture depth, the number of grooves and the groove width ratio, while the friction force varies slowly with those parameters. Well-designed groove texture can improve the performance of the water-lubricated thrust bearing. Originality/value This paper proposes a mathematical model considering turbulent and cavitation effect for water-lubricated thrust bearing with surface texture. This model can be complementary to conventional laminar model which is used to analyze the performance of textured bearing at low rotary speed.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference32 articles.

1. A laser surface textured parallel thrust bearing;Tribology Transactions,2003

2. Study on mixing flow effects in a high speed journal bearing;Tribology International,2001

3. A multiscale method modeling surface texture effects;Journal of Tribology-Transactions of the ASME,2007

4. Experimental investigation of laser surface textured parallel thrust bearings;Tribology Letters,2004

5. Dynamic analysis of water-lubricated motorized spindle considering tilting effect of thrust bearing;Proceedings of the Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3