Solid–liquid two-phase flow and erosion calculation of butterfly valves at small opening based on DEM method

Author:

Xu Benliang,Zhu Zuchao,Lin Zhe,Wang Dongrui

Abstract

Purpose The study aims to decrease the effect of solid particles on a butterfly valve, which will cause seal failure and leakage, providing a reference for anti-wear design. Design/methodology/approach In this paper, computational fluid dynamics discrete element method (CFD-DEM) simulation was conducted to study the solid–liquid two-phase flow characteristics and erosion characteristics of a butterfly valve with a different opening. Findings Abrasion at 10% opening is affected by high-speed jets in upper and lower parts of the pipeline, where the erosion is intense. The impact of the jet on the upper part of 20% opening begins to weaken. With the top backflow vortex disappearing, the effect of lower jet is enhanced. Meanwhile, the bottom backflow vortex phenomenon is obvious, and the abrasion position moves downward. At 30% opening, the velocity is further weakened, and the circulation effect of lower flow channel is more obvious than that of the upper one. Originality/value It is the first time to use DEM to investigate the two-phase flow and erosion characteristics at a small opening of a butterfly valve, considering the effect of inter-particle collision. Therefore, this study carries on the thorough analysis and discussion. At the same opening degree, with increasing of the particle size, the abrasion of valve frontal surface increases when the size is less than 150 µm and decreases when it is greater than 150 µm. For the valve backflow surface, this boundary value becomes 200 µm. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2020-0264/

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference25 articles.

1. Erosion of a multistage orifice due to liquid-solid flow;Wear,2017

2. Experimental investigation of solid particle erosion in successive elbows in gas dominated flows,2018

3. A study of erosion phenomena: part II;Wear,1963

4. Erosion prediction of liquid-particle two-phase flow in pipeline elbows via CFD–DEM coupling method;Powder Technology,2015

5. Study of particle mass loading effects on sand erosion in a series of fittings;Powder Technology,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3