A multi-vision-based system for tube inspection

Author:

Jin Peng,Liu Jian Hua,Liu Shaoli,Wang Xiao

Abstract

Purpose Geometric errors are common in metallic bent tubular parts. Thus, tubes should be inspected and fixed before welding with the joints first. After welding, the relative position of the joints is also necessary to be inspected to judge whether the tube can be assembled reliably. Therefore, the inspection plays an important role in the tube’s assembly. The purpose of this paper is to propose a multi-vision-based system designed to inspect the tube and the relative position of the joints. Design/methodology/approach For the tube inspection, the small cylinders are taken as the primitives to reconstruct the tube using the multi- vision-based system. Then, any geometric error in the tube can be inspected by comparing the reconstructed models and designed ones. For joints’ inspection, authors designed an adapter with marked points, by which the system can calculate the relative position of the joints. Findings The reconstruction idea can recognise the line and arc segments of a tube automatically and resolve the textureless deficiency of the tube’s surface. The joints’ inspection method is simple in operation, and any kinds of joints can be inspected by designing the structure of the adapters accordingly. Originality/value By experimental verification, the inspection precision of the proposed system was 0.17 mm; the inspection time was within 2 min. Thus, the system developed can inspect a tube effectively and automatically. Moreover, authors can determine how the springback of the arcs behaves, allowing in-process springback prediction and compensation, which can reduce geometric errors in the tubes given the present bending machine accuracy.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Control and Systems Engineering

Reference49 articles.

1. Advanced tubular (2015), available at: www.advancedtubular.com/vtube-laser.htm (accessed 20 December 2015).

2. Aicon (2016), available at: http://aicon3d.com/products/tubeinspect-products/tubeinspect/technical-details.html (accessed 20 February 2016).

3. Keypoint based automatic image orientation and skew investigation on tie points;Kybernetes,2013

4. Generating parametric models of tubes from laser scans;Computer Aided Design,2009

5. A robust multi-camera 3D ellipse fitting for contactless measurements;Second Joint 3DIM/3DPVT Conference: 3D Imaging, Modeling, Processing, Visualization &Transmission,2012

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3