US efficient factors in a Bayesian model scan framework

Author:

O'Connell MichaelORCID

Abstract

PurposeThe author examines the impact these efficient factors have on factor model comparison tests in US returns using the Bayesian model scan approach of Chib et al. (2020), and Chib et al.(2022).Design/methodology/approachEhsani and Linnainmaa (2022) show that time-series efficient investment factors in US stock returns span and earn 40% higher Sharpe ratios than the original factors.FindingsThe author shows that the optimal asset pricing model is an eight-factor model which contains efficient versions of the market factor, value factor (HML) and long-horizon behavioral factor (FIN). The findings show that efficient factors enhance the performance of US factor model performance. The top performing asset pricing model does not change in recent data.Originality/valueThe author is the only one to examine if the efficient factors developed by Ehsani and Linnainmaa (2022) have an impact on model comparison tests in US stock returns.

Publisher

Emerald

Reference37 articles.

1. The devil in HML’s details;Journal of Portfolio Management,2013

2. Which alpha?;Review of Financial Studies,2017

3. Comparing asset pricing models;Journal of Finance,2018

4. Model comparison with Sharpe ratios;Journal of Financial and Quantitative Analysis,2020

5. Which factors are risk factors in asset pricing? A model scan approach;Journal of Business and Economic Statistics,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3