Parametric optimization of friction stir welding process for marine grade aluminum alloy

Author:

Goyal AmitORCID,Garg Ramesh Kumar

Abstract

Purpose The purpose of this paper is to deal with the experimental data related to the friction stir welding (FSW) of marine grade Al-Mg4.2 alloy. Mathematical models are developed to study the individual and interaction effects of input variables on the performance characteristics of joints. FSW parameters are optimized to maximize the yield strength and weld nugget microhardness of the welded joints. Design/methodology/approach Response surface methodology is applied to establish the mathematical relationship between six input factors, namely, tool rotational speed, transverse speed, tool shoulder diameter, tool material hardness, tilt angle and pin profile; and two response variables, namely, yield strength and weld nugget microhardness. Six factors–five-level rotatable central composite matrix is used for the design of experiments. The quadratic model is used, as suggested by the design expert software, to express the response parameters as a function of investigated input parameters. The competence of the developed models is verified through analysis of variance. Findings The present investigation clearly indicates that the studied input factors have a significant effect on the quality of the joints. The optimal combination of input factors is determined to achieve the desired responses. Originality/value This paper teems a new look on tensile and hardness properties of Al-Mg4.2 joints by relating the microstructure, fractrographs and grains distribution with the dynamic recrystallization and plasticized material movement during the FSW process. The outcome of this research will help in seizing the opportunities of joining Al-Mg4.2 alloy using FSW, in the offshore and marine applications.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Reference18 articles.

1. Influence of welding speed on corrosion behaviour of friction stir welded AA5086 aluminium alloy;Journal of Central South University,2016

2. Influences of pin profile on the mechanical and microstructural behaviors in dissimilar friction stir welded AA6082–AA7075 butt joint;Materials & Design,2015

3. Effect of welding parameters on microstructure, mechanical properties and residual stress fields of friction stir welds on AA5086;Kovove Materialy,2015

4. Effect of welding parameters on microstructure and mechanical properties of friction stir welded EN AW 5083 H111 plates;Materials Science and Technology,2013

5. Friction stir welding characteristics of different heat-treated-state 2219 aluminum alloy plates;Materials Science and Engineering: A,2006

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3