Production of thermochromic microcapsulated inks for smart packaging and examination of printability properties

Author:

Arman Kandirmaz Emine,Ozcan Arif,Er Ulusoy Duygu

Abstract

Purpose Stimulant-sensitive materials exhibit physical or chemical reversible changes in their properties as a result of environmental variables. One of these materials is thermochromic materials. Materials with thermochromic sensitivity change their color with heat exchange. For this reason, it can be used in many different fields such as security inks. Such substances decompose rapidly by being affected by weather conditions. Furthermore, the particle sizes are larger than normal pigments, and therefore, it is difficult to stabilize thermochromic dyes. Because of all these adverse conditions, thermochromic colorants must be protected before use in the ink. This protection is planned to be provided by the microcapsulation technique. The purpose of this study is to determine the thermochromic printing inks that can be stored stably by microcapsulation technique, to protect it from environmental conditions and the determination of printability parameters. Design/methodology/approach In this study, capsules with a core material of thermochromic dyeing with polyurea formaldehyde (PUF) or poly-phenolmelamine formaldehyde (PMF) shell were synthesized at appropriate pH and temperature using the appropriate solvent and mixing speed. The chemical structure and dimensions of the obtained capsules were examined by ATR-FTIR and scanning electron microscopy, respectively. The produced thermochromic microcapsules were mixed with alkyd resin and mineral oil and screen printing ink was obtained. Printability tests such as surface morphology, color, gloss and light fastness were applied. Findings As a result, it was determined that PMF is not a suitable encapsulation technique for thermochromic dyes under suitable conditions and eliminates thermochromic property by providing heat stability. It was found that PUF microcapsulation can be used in thermochromic dyestuff encapsulation and does not lose the thermochromic property. It has also been found that PUF microcapsules increase the lightfastness and stability of thermochromic dye ink. Originality/value This study provides experimental research on the encapsulation of a thermochromic dye and its use in ink.

Publisher

Emerald

Subject

Materials Chemistry,Surfaces, Coatings and Films

Reference32 articles.

1. Preparation and characterization of melamine-formaldehyde microcapsules containing citrus unshiu essential oil;Fibers and Polymers,2014

2. PH‐controlled lavender oil capsulation with ABA‐type block copolymer and usage in paper coating;Flavour and Fragrance Journal,2019

3. Antrakinon bileşikleri içeren metal komplekslerinin sentezi ve fotokromik özelliklerinin incelenmesi;Ç.Ü. Fen ve Mühendislik Bilimleri Dergisi,2012

4. Lightfastness and high‐temperature stability of thermochromic printing inks;Coloration Technology,2013

5. Synthesis and characterization of resorcinol-based cross-linked phenol-formaldehyde microcapsules for encapsulation of pendimethalin;Polymer-Plastics Technology and Engineering,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3