Discovering social media topics and patterns in the coronavirus and election era

Author:

Hashemi Mahdi

Abstract

Purpose This study aims to understand the relationship between politics and pandemics in shaping the characteristics and themes of people’s Tweets during the US 2020 presidential election. Additionally, the purpose is to detect misinformation and extremism, not only to help online social networks (OSN) to target such content more rapidly but also to provide a close to real-time picture of trending topics, misinformation, and extremism flowing on OSN. This could help authorities to identify the intents behind them and find out how and when they should address such content. Design/methodology/approach This study focuses on extracting and verifying knowledge from large-scale OSN data, at the intersection of the Coronavirus pandemic and the US 2020 presidential election. More specifically, this study makes manual, statistical and automatic inferences and extracts knowledge from over a million Tweets related to the two aforementioned major events. On the other hand, disinformation operations intensified in 2020 with the coincidence of the Coronavirus pandemic and presidential election. This study applies machine learning to detect misinformation and extreme opinions on OSN. Over one million Tweets have been collected by our server in real-time from the beginning of April 2020 to the end of January 2021, using six keywords, namely, Covid, Corona, Trump, Biden, Democrats and Republicans. These Tweets are inspected with regard to their topics, opinions, news, and political affiliation, along with misinformation and extremism. Findings Our analyses showed that the majority of these Tweets concern death tolls, testing, mask, drugs, vaccine, and travel bans. The second concern among these Tweets is reopening the economy and schools, unemployment, and stimulus bills. The third concern is related to the Coronavirus pandemic’s impacts on politics, voting, and misinformation. This highlights the topics that US voters on Twitter were most concerned about during this time period, among the multitude of other topics that politicians and news media were reporting or discussing. Automatic classification of these Tweets using a long short-term memory network revealed that Tweets containing misinformation formed between 0.5% and 1.1% of Coronavirus-related Tweets every month and Tweets containing extreme opinions formed between 0.5% and 3.1% of them every month, with its pick in October 2020, coinciding with the US presidential election month. Originality/value The originality of this study lies in establishing a framework to collect, process, and classify OSN data to detect misinformation and extremism and to provide a close to real-time picture of trending topics, misinformation, and extremism flowing on OSN.

Publisher

Emerald

Subject

Computer Networks and Communications,Sociology and Political Science,Philosophy,Communication

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3