Frictional catastrophe behaviors and mechanisms of brake shoe for mine hoisters during repetitious emergency brakings

Author:

Zhu Zhencai,Bao Jiusheng,Yin Yan,Chen Guoan

Abstract

PurposeIn order to improve the braking safety of mine hoisters, this paper aims to focus on the continuous repetitious emergency braking conditions to investigate an abnormal frictional phenomena called “Frictional catastrophe (FC)” and its mechanisms.Design/methodology/approachThe non‐asbestos brake shoe of a mine hoister was selected as frictional material and its paring material is 16Mn steel. The tribological properties of the brake shoe were tested on the pad‐on‐disc friction tester by the simulation of continuous emergency braking conditions. The thermal analysis experiments, the temperature field simulations and the SEM analysis of the brake shoe were accomplished to reveal the mechanisms of the FC.FindingsIt was found that the friction coefficient of the brake shoe sometimes falls suddenly during braking. This abnormal frictional phenomena is called “Frictional catastrophe (FC)”. It is considered that the friction heat, which is accumulated rapidly by the braking on the surface of the brake shoe, makes the surface layer material qualitatively change from the solid state to a mixed state composed of gases, liquids and solid. The frictional modality of the braking changes accordingly from dry friction to lubrication with gases and liquids. The sudden lubrication makes the friction coefficient fall suddenly and induces the FC phenomena.Originality/valueAn abnormal tribological phenomena called “Frictional catastrophe (FC)” was found in this paper. The investigations about the behaviors and mechanisms of the FC are considered helpful for improving the braking safety of mine hoisters and other machines.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3