Evolution of tooth flank roughness during gear micropitting tests

Author:

Martins Ramiro,Locatelli Cristiano,Seabra Jorge

Abstract

PurposeThe purpose of this paper is to get a better understanding of roughness evolution and micropitting initiation on the tooth flank, as well as the evolution of surface topography during the test load stages in a modified DGMK short micropitting test procedure.Design/methodology/approachA modified DGMK short micropitting test procedure was performed, using an increased number of surface observations (three times more) in order to understand the evolution of the surface during each load stage performed. Each of these surface observations consists in the evaluation of surface roughness, surface topography, visual inspection and also weigh measurements as well as lubricant analysis.FindingsThis work showed that the larger modifications on surface took place in the beginning of tests, especially during load stage K3 (lowest load, considered as running‐in) and on the first period of load stage K6, that is, during the first 200,000 cycles of the test. The 3D roughness parameters (St and Sv), obtained from the surface topographies, gave a more precise indication about surface roughness evolution and micropitting generation than the 2D parameters, especially in what concerns to inferring the depth of micropits and the reduction of roughness. Tooth flank topography allows to identify local changes on the surface and the appearance of first micropits.Research limitations/implicationsThis work was performed with gears holding a high surface roughness and with a ester‐based lubricant. It was interesting to see the differences observed for surface evolution, for other base oils and also for gears with lower roughness.Practical implicationsThe main implication of this work is the understanding that major changes in the surface took place in the first cycles, indicating that the running‐in procedure could be very important for the surface fatigue life. This work also showed that micropitting depends on local contact conditions. Depending on the roughness of the counter surface, micropitting can appear on the bottom of the deep valleys and/or do not appear on the tip of the roughness peaks. The surface topography, and implicitly 3D roughness parameters, is very useful for the observation of surface evolution.Originality/valueThis paper shows in detail the evolution of the tooth surface during a micropitting test. The micropits generation and evolution and also surface wear evolution are presented.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3