Tribological behavior of LaF3 nanoparticles as additives in poly‐alpha‐olefin

Author:

Zhang Ming,Wang Xiaobo,Liu Weimin

Abstract

PurposeThe purpose of this paper is to study the influences of test conditions to the tribological behavior of LaF3 nanoparticles as an additive to a polyalphaolefin (PAO).Design/methodology/approachAn Optimol‐SRV4 oscillating friction and wear tester (SRV) were used to investigate the tribological properties of LaF3 nanoparticles as an additive in a polyalphaolefin (PAO). The 3‐D morphologies and wear loss volume of the worn scar were measured using a surface profilometer. The chemical state and the intensity of La and F elements on worn surface after friction test was investigated with X‐ray photoelectron spectroscopy to interpret the possible mechanisms of friction‐reduction and anti‐wear with LaF3 nanoparticles.FindingsThe experimental results show that LaF3 nanoparticles added to PAO exhibit excellent load‐carrying capacity, anti‐wear and friction‐reduction properties. LaF3 nanoparticles deposited on the worn surface under lower test temperature during the friction test, and higher applied load, higher test frequency and longer test duration are propitious to the deposition of LaF3 nanoparticles accumulated on the rubbing surface. Under higher temperature, a complicated tribo‐chemical reaction occurred during the friction process, the tribo‐chemical reaction product of La2O3 deposit on worn surface, which also exhibits good lubricating performance.Originality/valueThis paper investigates the tribological properties of LaF3 nanoparticles as green oil additive in poly‐alpha‐olefin (PAO) under variable temperature, applied load, sliding speed and sliding duration. The results could be very helpful for the further applications of LaF3 nanoparticles additives in industry.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3